

2018 MASH Medal Update

- First Coast Cup: Chris Lopez (gold, Munich Helles), Michael Moussa (bronze, Sweet Stout), Bob and Rachel Billany (silver, Best Bitter), Dave Kirsten (bronze, American Pale Ale; silver, Tropical Sout)
- MASH now has 36 medals for the year.

	<u> </u>	
1	David Kirsten	57
2	Geoffrey Shideler	52
3	Bob & Rachel Billany	24

Present standings

GOLD 10

SILVER

12

BRONZE

14

Commander Saaz Judging and Awards

September 14th

830am- Judging prep

9am start 1st session

12pm lunch

1pm-5pm second judging session

6pm Commanders call beer fest and keg comp

- \$20 for tickets including : wings/sliders veggie tray cheese tray and unlimited beer samples

September 15th

830am judging prep

9am start 1st session

12pm break for lunch

1pm-4pm BOS Judging (and any mini BOS left)

From 1-4pm judges will have an opportunity to go to Florida beer Co. For a social while BOS judging takes place.

6pm splashdown awards ceremony- ticketed meal required for those present. \$35 ea includes meal selection and unlimited beer. Plus a huge raffle!

Oktoberfest with Palm Beach Draughtsmen

September 29th: 1:00 – 6:30

Only \$25 per person for food and beer!

Typically 1 h 10 min - 1 h 40 min from MIA

Carpool!

MASH Polo Shirts

We are going to order polo shirts for MASH. If you would like one, please let us know.

Grovetoberfest – Saturday, October 13, 2018

Mark your calendars!

If you bring beer, you are prioritized to have free entry. If space is left, first come first serve.

Treasurer's Report

Account Balances 8/23/18

ASSETS	
Cash and Bank Accounts	
Checking	1,805
PayPal Account	3,057
Cash Account	362
TOTAL ASSETS	5,224
LIABILITIES	0.00
OVERALL TOTAL	5,224

Cash Flow YTD

TOTAL INFLOWS	4,577
TOTAL OUTFLOWS	4,330
OVERALL TOTAL	247

Paid Members: 47

2018 Expense Detail

Category		Amount		
Coconut Cup	\$	1,924.51		
Reimbursement of Competition Entry Fees Medal Incentive	\$ \$	463.00 380.00		
Mid-year soltice party	\$	504.67		
Supplies	\$	816.87		
Pay Pal Fees	\$	179.94		
FL State Tax	\$	61.25		
TOTAL	\$	4,330.24		

AN INTRODUCTION TO ADVANCED MASHING TECHNIQUES

(not the early 90s Brady Bunch reboot)

WHAT IS MASHING?

- a) The process of joining Miami's awesome homebrew club
- b) Binge watching a hilarious comedy series from the 70s and early 80s about military doctors
- c) An enzymatic process
- d) All of the above

WHAT IS MASHING?

- a) The process of joining Miami's awesome homebrew club
- b) Binge watching a hilarious comedy series from the 70s and early 80s about military doctors
- c) An enzymatic process
- d) All of the above

WHAT IS MASHING?

- a) The process of joining Miami's awesome homebrew club
- b) Binge watching a hilarious comedy series from the 70s and early 80s about military doctors
- c) An enzymatic process
- d) All of the above

WHAT HAPPENS DURING THE MASH?

- > We heat our brewing water to the desired temperature
- ➤ We "dough in" by adding our grist
- > This activates enzymes, which
 - Convert starches to fermentable sugars
 - Reduce proteins into amino acids and peptides
- ➤ I usually crack my first beer

MASH TYPES

Single Infusion

Simplest of all

One rest at one temp, plus mash out (optional)

Multi-Step

More involved traditional technique

You hold the mash at two or more rests

Different rests result in producing various enzymes

Decoction

More involved traditional technique

You pull one or more decoctions, boil and return to the mash

Results in melanoidin production

MASH TYPES

Single Infusion

Simplest of all

One rest at one temp, plus mash out (optional)

Multi-Step

More involved traditional technique

You hold the mash at two or more rests

Different rests result in producing various enzymes

Decoction

More involved traditional technique

You pull one or more decoctions, boil and return to the mash

Results in melanoidin production

ENZYMATIC RESTS

The key p	layers and	l how t	hey get d	lown
-----------	------------	---------	-----------	------

Enzyme	Operation Temps	рН	Denatures At	Function
	ºF		ºF	
Phytase	86-126	5.0-5.5		Acid Rest — Lower pH (the "norm" is between 95-113ºF)
Beta-glucanase	95–105	<5.4	122	Break down gums (Beta-glucans)
Proteolytic enzymes (proteinase and peptidase)	113–140	4.6–5.0	158	Protein Rest — Typically capped at 138, produces Free Amino Nitrogen (FAN); breaks up large, haze-forming proteins without hurting head retention in the 131º-137º range
Beta-amylase ★	140–149	5.4–5.6	167	Beta-amylase Rest — Produces maltose by snipping final two sugars in the starch chain
Alpha-amylase ★	158–167	5.6–5.8	176	Saccharification Rest — Produces maltose, maltotriose, sucrose, glucose, fructose and unfermentable dextrins by snipping at the starch chain randomly

ALPHA V. BETA

HOW IS A STEP MASH DONE?

INFUSION CONSIDERATIONS

INFUSION TOOLS

There are a few ways to calculate the volumes and temperatures of your infusion additions.

Do the Math

Initial Infusion Equation:

Strike Water Temperature Tw = (.2/r)(T2 - T1) + T2

Mash Infusion Equation:

Wa = (T2 - T1)(.2G + Wm)/(Tw - T2)

where:

r = The ratio of water to grain in quarts per pound.

Wa = The amount of boiling water added (in quarts).

Wm = The total amount of water in the mash (in quarts).

T1 = The initial temperature (¡F) of the mash.

T2 = The target temperature (¡F) of the mash.

Tw = The actual temperature (¡F) of the infusion water.

G = The amount of grain in the mash (in pounds).

Use an Online Calculator

Brewers Friend (Quick)

Brewers Friend (Full)

Homebrew Supply

Brewtoad

Visit HowToBrew for deets

SOOO...WHY BOTHER?

(AND WHEN)

- Multi-step mashing can give you greater control of your wort
- For example, you can produce a more highly fermentable wort, resulting in a drier beer. Or remove haze forming proteins, resulting in a clearer beer.
- It's useful if you plan on using undermodified malts, such as Floor-Malted Bohemian Pilsner
- Useful when using a high percentage of malts with low diastatic power (i.e. Munich of Vienna)
- Also useful if you want to break down glucans when using a high percentage of glucan-rich malts, like wheat and rye (at least 25%)

PRACTICAL STEPS

Traditional Step Mash

Protein Rest 1130-1220 for 10-20 min.

Beta Rest 144°-147° for 30-45 min.

Alpha Rest 156°-158° for 30-45 min.

Mash Out 170° for 10 min.

Hochkurz Mash

Beta Rest 144º for 30-45 minutes

Alpha Rest 158° for 30-45 minutes

Mash Out 170° for 10 minutes

Ferulic Rest

109°-113° for 10 minutes at the start of your schedule

This promotes the production of 4-vinyl-guaiacol (4VG) during fermentation, which can accentuate clove aroma in wheat beers, such as Hefeweizens

YET MORE PRACTICAL STEPS

FINAL CONSIDERATIONS

- Step mashing is one more tool in a brewer's toolbox. But your recipe should always dictate your mash schedule.
- Employing a step mash tends to result in a drier beer.
- Using a protein rest on fully modified malts can result in a thin, watery beer, so look at your grist first and determine the length and temperature (both a shorter rest and a higher temp will result in less glucan breakdown).

A BIT MORE IN-DEPTH READING

- Here's a great article by Dave Green on BYO: The Science of Step Mashing
- Of course, John Palmer has an <u>in-depth chapter</u> in How to Brew
- Wikibooks has <u>a good article</u>
- Here's a very detailed and helpful <u>post</u> on HombrewTalk
- This is a good post on <u>The Grainfather Site</u>

ON BEHALF OF THE LAMBERT FAMILY THANK YOU!

